Friday, September 20, 2013

More work to do

Next week lecture will be based on Section 2.1 of the textbook. Let me know if I should focus on a particular concept you've found difficult to understand.

Please bring the following problems solved for the next class in written form:

1)Suppose users share a 2 Mbps link. Also suppose each user transmits continuosly at 1 Mbps when transmitting, but each user transmits only 20 percent of the time. (See the discussion of statistical multiplexing in Section 1.3.)
a. When circuit switching is used, how many users can be supported?
b. For the remainder of this problem, suppose packet switching is used. Why will there be essentially no queuing delay before the link if two or fewer users transmit at the same time? Why will there be a queuing delay if three users transmit at the same time?
c. Find the probability that a given user is transmitting.
d. Suppose now there are three users. Find the probability that at any given time, all three users are transmitting simultaneously. Find the fraction of time during which the queue grows.

2)Suppose Host A wants to send a large file to Host B. The path from Host A to
Host B has three links, of rates R1 = 500 kbps, R2 = 2 Mbps, and R3 = 1 Mbps.
a. Assuming no other traffic in the network, what is the throughput for the file transfer.
b. Suppose the file is 4 million bytes. Dividing the file size by the throughput, roughly how long will it take to transfer the file to Host B?
c. Repeat (a) and (b), but now with R2 reduced to 100 kbps.

No comments:

Post a Comment